Polycystic Ovary Syndrome & Cardiometabolic Risk

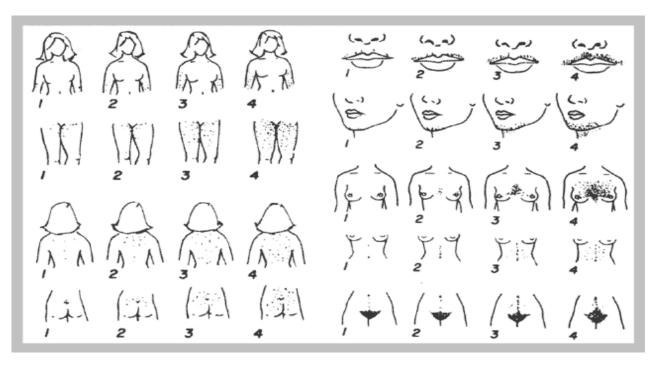
Anuja Dokras, MD., Ph.D.
Professor of Obstetrics and Gynecology
Director PENN PCOS Program
University of Pennsylvania

Disclosures

Grant funding – NIH

Consultant - Medtronic, AbbVie, Ferring

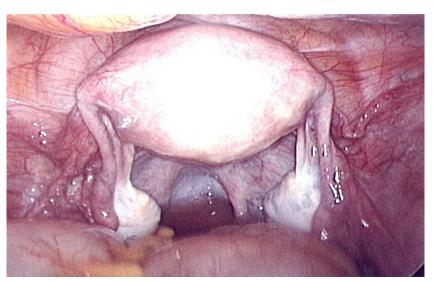
Rotterdam Criteria


- 1. Oligo-ovulation or anovulation
- 2. Clinical or biochemical signs of hyperandrogenism
- 3. Polycystic ovaries on ultrasound

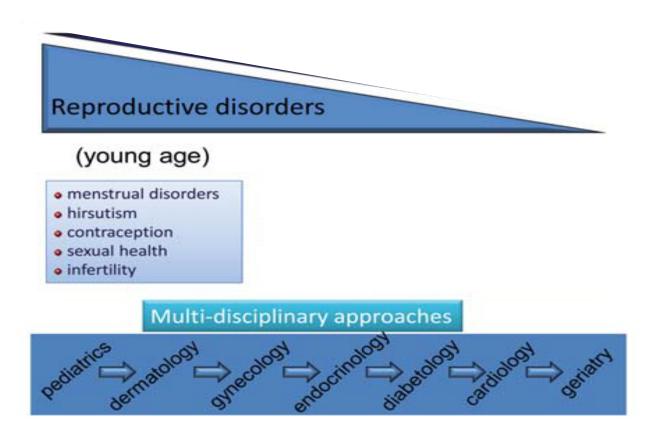
any two of above three (exclusion of TSH, Prolactin, 17 OH progesterone, DHEAS)

Most common endocrine disorder in reproductive age women 8-13%

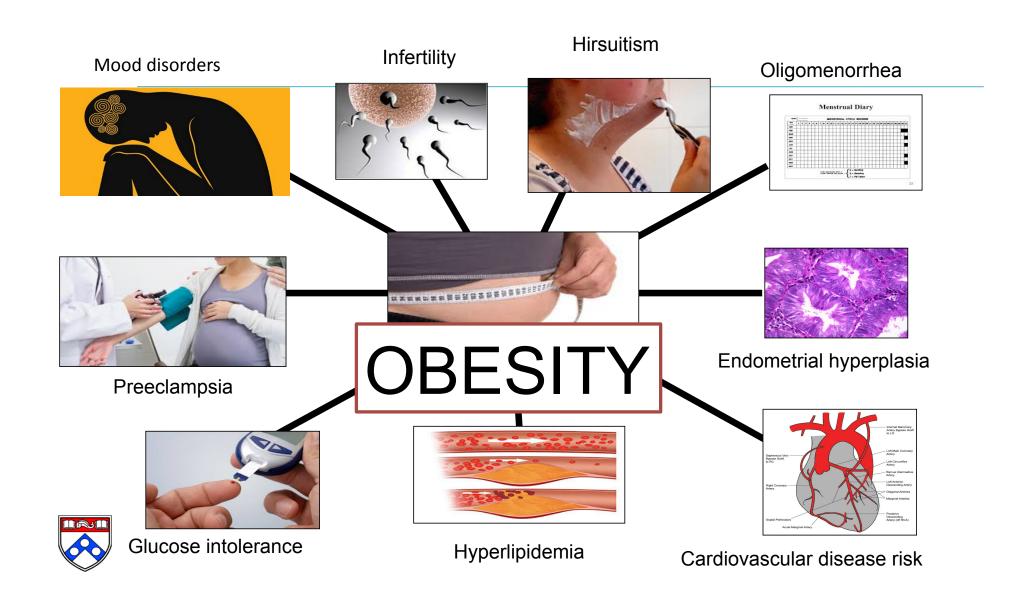
Human Reproduction 2018 Sep 1;33(9):1602-1618 Fertil Steril 2018 Aug;110(3):364-379.

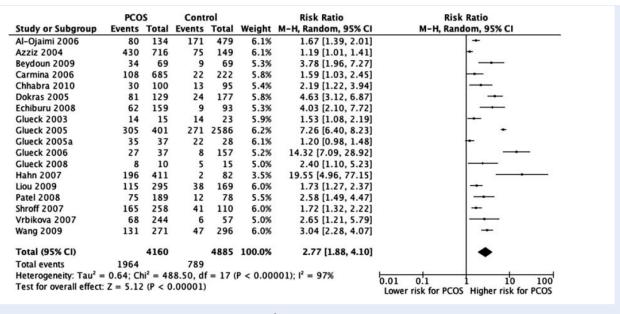

Ultrasound Morphology of Ovaries

THERE IS NO OVARIAN CYST!


Diagnostic Dilemmas

- Changing definitions
- Heterogeneous phenotypes
- Age of diagnosis changing symptoms
- Race/Ethnicity

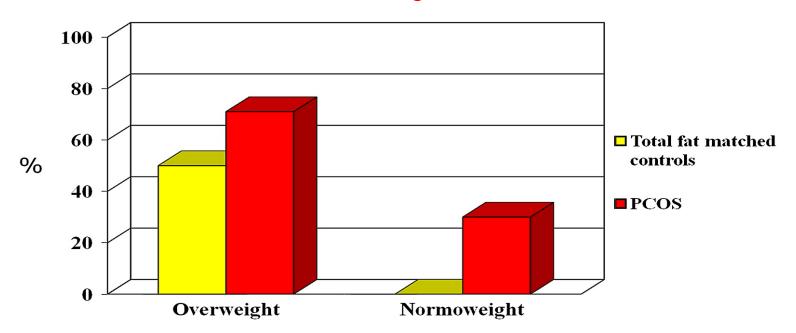



A Changing Paradigm in PCOS

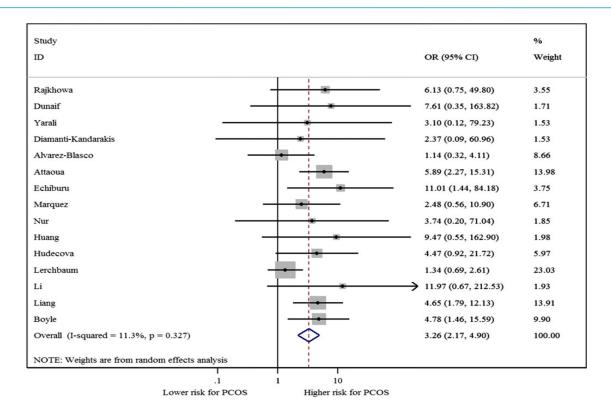
Obesity Increased in PCOS

Figure 2 Meta-analysis of the prevalence of obesity (BMI \geq 30 kg/m²) in women with and without PCOS.

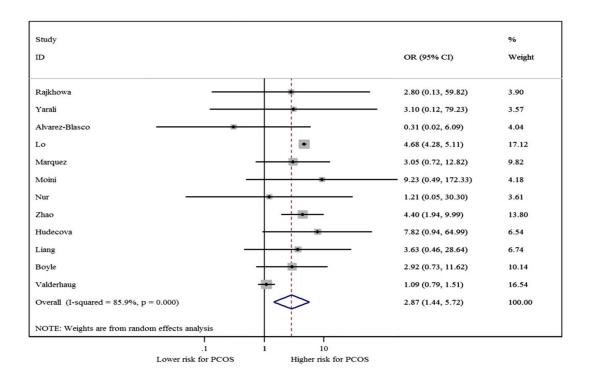
OR 2.77 (95%CI 1.88-4.1)


Obesity High in PCOS Adolescents

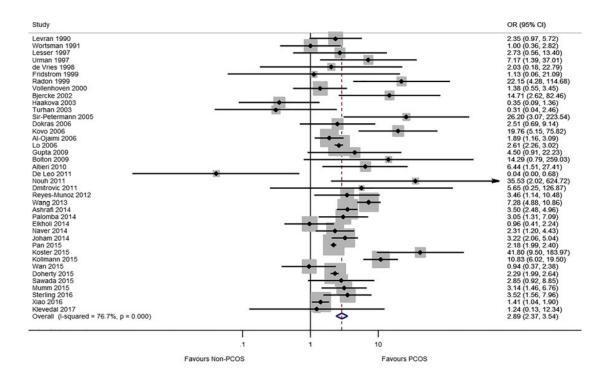
	All	PCOS-R ^a			PCOS-N ^a			PCOS-AESa		
	n = 232	No (n = 179)	Yes (n = 48)	P	No (n = 216)	Yes (n = 10)	Р	No (n = 216)	Yes (n = 11)	P
Current age (years)	15.2 (0.48)	15.2 (0.43)	15.4 (0.62)	0.099	15.2 (0.45)	15.7 (0.72)	0.001	15.2 (0.43)	15.9 (0.89)	< 0.00
Age at menarche (years)	12.5 (1.2)	12.6 (1.2)	12.4 (1.1)	0.361	12.5 (1.2)	11.9 (1.4)	0.165	12.6 (1.2)	11.8 (1.3)	0.112
Months since menarche	32.2 (15.0)	31.3 (15.0)	35.4 (15.0)	0.092	31.8 (15.0)	46.1 (17.0)	0.026	31.5 (14.4)	48.4 (17.8)	0.010
BMI (kg/m ²)	22.7 (3.8)	22.3 (3.0)	24.5 (5.7)	< 0.001	22.4 (3.4)	29.4 (6.8)	< 0.001	22.5 (3.4)	28.8 (6.7)	< 0.00
BMI (z-score)	0.54 (0.8)	0.48 (0.8)	0.77 (0.9)	0.026	0.50 (0.8)	1.45 (0.9)	0.008	0.50 (0.8)	1.37 (0.9)	0.00
BMI, n (%)										
Normal	163 (70.3)	134 (74.9)	26 (54.2)	< 0.001	157 (72.7)	2 (20.0)	< 0.001	153 (70.8)	3 (27.3)	< 0.00
Overweight	48 (20.7)	37 (20.7)	10 (20.8)		44 (20.4)	3 (30.0)		44 (20.4)	3 (27.3)	
Obese	19 (8.2)	7 (3.9)	11 (22.9)		13 (6.0)	5 (50.0)		13 (6.0)	5 (45.5)	


Abdominal Adiposity in PCOS

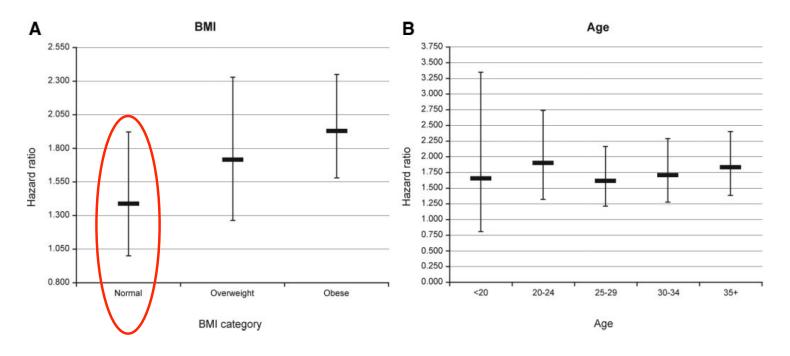
Prevalence of abdominal adiposity in normal and overweight women


PCOS – Impaired Glucose Tolerance

OR 3.26 (2.17-4.9) Prevalence 6-35%


PCOS - Type 2 Diabetes

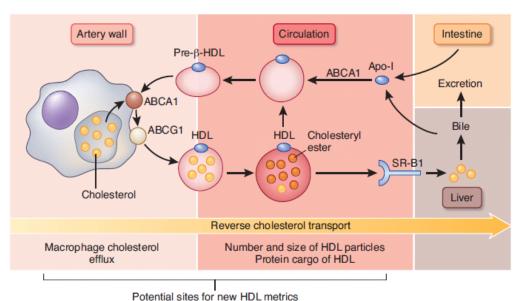
OR 2.87 (1.44-5.72) Prevalence 2-10%


PCOS - Gestational Diabetes

OR 2.89 (95% CI 2.37 – 3.54)

Diabetes Risk is Independent of Age and BMI

HR 3.07 (95% CI 2.7-3.3)


Dyslipidemia in PCOS - LDL-C

	Co	ntrols		PCOS				Mean Difference	Mean Difference
Study or Subgroup	Mean [mg/dL]	SD [mg/dL]	Total	Mean [mg/dL]	SD [mg/dL]	Total	Weight	IV, Random, 95% CI [mg/dL]	IV, Random, 95% CI [mg/dL]
Rizzo 2009	101	47	27	137	39	35	1.6%	-36.00 [-57.94, -14.06]	
Rizzo 2009abc	105	62	27	101	47	15	0.8%	4.00 [-29.36, 37.36]	
Moran 2009a	125	27	27	129	35	80	3.4%	-4.00 [-16.75, 8.75]	-
Roa-Barrios 2009a	106	35	48	117	47	62	2.7%	-11.00 [-26.33, 4.33]	+
Cetinkalp 2009a	110	29	91	118	29	129	5.4%	-8.00 [-15.78, -0.22]	-
Samy 2009a	97	15	40	110	32	52	4.5%	-13.00 [-22.86, -3.14]	-
Samyab	96	24	35	102	22	56	4.5%	-6.00 [-15.82, 3.82]	
Oral 2009ab	93	22	43	99	7	48	5.9%	-6.00 [-12.87, 0.87]	+
Berneis 2009a	105	62	37	121	43	42	1.4%	-16.00 [-39.84, 7.84]	
Macut 2008ab	101	23	53	101	39	79	4.2%	0.00 [-10.60, 10.60]	+
/alkenburg 2008	106	19	295	125	25	557	7.6%	-19.00 [-22.00, -16.00]	•
Hahn 2007	112	37	82	121	38	411	4.9%	-9.00 [-17.81, -0.19]	
Carmina 2005	96	12	85	111	36	204	6.5%	-15.00 [-20.56, -9.44]	-
Carmina 2005a	101	8	42	111	36	204	6.5%	-10.00 [-15.50, -4.50]	·
Carminaac	96	12	85	107	35	50	4.4%	-11.00 [-21.03, -0.97]	
/ryonidou 2005	104	24	55	119	35	75	4.4%	-15.00 [-25.15, -4.85]	
Chekir 2005	104	24	45	124	45	25	2.0%	-20.00 [-38.98, -1.02]	
Yildirim 2003ab	108	28	30	107	23	30	3.4%	1.00 [-11.97, 13.97]	+
Christian 2003a	99	62	71	111	71	36	1.1%	-12.00 [-39.31, 15.31]	
Legro 2001a	117	23	35	130	33	153	4.7%	-13.00 [-22.24, -3.76]	
Legroab	88	26	27	115	32	42	3.1%	-27.00 [-40.78, -13.22]	
Tiras 1999a	93	22	35	114	33	35	3.3%	-21.00 [-34.14, -7.86]	
Meirow 1996	111	27	20	148	39	31	2.1%	-37.00 [-55.12, -18.88]	
Von Eckardstein 1996	111	27	26	141	46	26	1.8%	-30.00 [-50.50, -9.50]	·—
Talbott 1995	111	35	206	118	32	206	6.1%	-7.00 [-13.48, -0.52]	+
Mild 1992	105	28	16	122	32	47	2.5%	-17.00 [-33.49, -0.51]	
Aild 1985	96	38	29	119	64	30	1.1%	-23.00 [-49.75, 3.75]	
Total (95% CI)			1612			2760	100.0%	-12.60 [-15.69, -9.51]	•
Heterogeneity: Tau² = 3 Test for overall effect Z		1, df = 26; P =	58%						-100 -50 0 50 1 Favours Controls Favours PCOS

LDL-C levels were higher by 12.6mg/dl (%95 CI 9.5-16.5)

Reverse Cholesterol Transport & Efflux

ure 1 Overview of reverse chalesteral transport by HDL Potentia

Figure 1 Overview of reverse cholesterol transport by HDL. Potential sites for new HDL metrics are indicated.

Cholesterol Efflux Capacity & Coronary Artery Disease

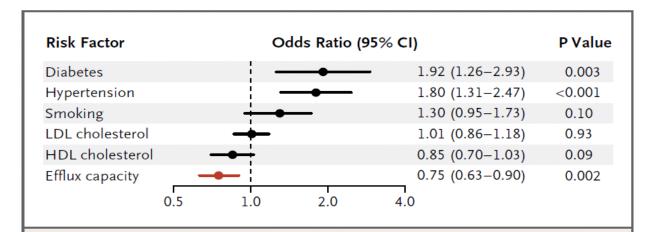
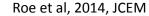
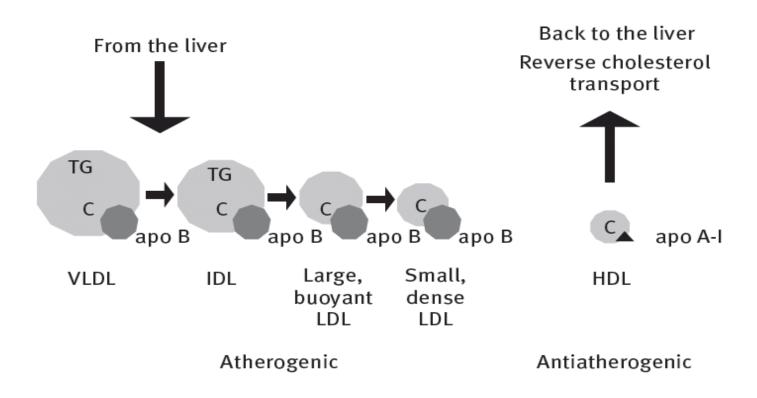


Figure 1. Odds Ratios for Coronary Artery Disease According to Efflux Capacity and Selected Risk Factors.


The logistic-regression model was also adjusted for age and sex. Odds ratios for continuous variables are per 1-SD increase.

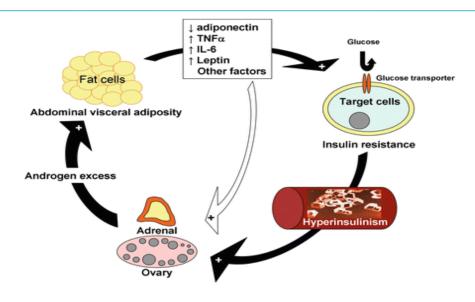
Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS

Andrea Roe, MD,¹, Jennifer Hillman, MD, Samantha Butts, MD, MSCE¹, Mathew Smith, BS,¹ Daniel Rader, MD², Martin Playford, PhD,³, Nehal N Mehta, MD, MSCE³ and Anuja Dokras, MD., PhD¹


	PCOS n=124	Controls n=67
Total Cholesterol mg/dL)	192.5±37.9	189.7±34.5
➡ HDL-C (mg/dL)	54.7 ±16.1	57.5± 17.9
Non-HDL Chol	137.7 ±38	124.9 ± 44
LDL-C mg/dl	167.1± 50.8	154.9 ±43.9
TG mg/dl	146.5± 92.9	112.2 ±69.9**
Lipid lowering therapy	2/125 (1.6%)	1/65 (1.5%)
Apo A1 mg/dl	161.1 ±38.2	174.4 ±35.5**
Apo B mg/dl	84.8±23.3	79.1±19.3
Apo B /A1	0.55 0.2	0.47 0.16**
▲ HDL function#	0.96 (IQR 0.86-1.06)	1.05 (0.91-1.18)*
Cholesterol efflux capacity	0.30 (1011 0.00-1.00)	1.03 (0.31-1.10)

Women with PCOS had an 11% decrease in normalized cholesterol efflux capacity

Lipid Profile Overview


Atherogenic Lipoprotein Particles – NMR Spectroscopy

Particle concentration	PCOS (n=124)	Controls (n=68)
Total VLDL and Chylomicrons nmol/L Large VLDL and Chylomicrons nmol/L Medium VLDL nmol/L Small VLDL nmol/L	51.44±24.16 4.04±3.7 18.36±12.64 29.55 ± 14.54	45.73±17.56 2.37±1.73 ** 15.27 ± 7.62 29.16± 14.19
Total LDL nmol/L IDL nmol/L Large LDL nmol/L Small LDL nmol/L	1067.76±391.75 201.01± 125.31 200.94± 143.27 652.91 ±367.95	919.57± 300.34 * 253.85 ±181.39 203.07 ± 147.08 434.33± 280.17 **
Total HDL umol/L Large HDL umol/L Medium HDL umol/L Small HDL umol/L	39.09 ±9.14 6.77 ±4.44 14.39 ±7.62 18.32 ±5.96	35.64 ± 7.83 ** 7.68± 3.77 12.77± 6.4 16.21± 5.37 *
Particle Size nm VLDL LDL HDL	49.58±6.04 21.03 ±5.73 9.34 ±0.49	46.78± 5.28 ** 20.67± 0.65 9.55 ± 0.44 **

^{**}p<0.01, *p<0.05

Risk of Metabolic Syndrome

Adults OR 3.35 (95% CI 2.44-4.59)

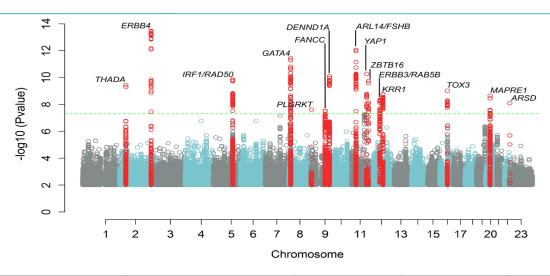
Lim et al, Obesity Rev 2018

Adolescents OR 2.69 (1.29, 5.60)

Fazleen et al, Diabet Metab Syn 2018

Non Obese Women with PCOS have increased Cardio Metabolic Risk

Meta-analysis res	ults for glucose metabolic	disturbances and card	iovascular disease risk factors.			
					Heterog	eneity
Outcome	No. of studies	Effects model	OR (95%CI)	P value	P_h value	<i>l</i> ² (%)
Comparison in glu	ucose metabolism disturba	nces				
HIN	1		36.27 (1.76, 747.12)			
IR	3	Random	5.70 (1.46, 22.32)	.012	0.005	81.1
IFG	4	Random	1.08 (0.46, 2.53)	.864	0.109	50.4
IGT	4	Fixed	3.42 (1.56, 7.52)	.002	0.310	16.3
Pre-DM	3	Fixed	1.39 (0.73, 2.63)	.317	0.459	0
T2DM	5	Fixed	1.47 (1.11, 1.93)	.007	0.555	0
T2DM cohort	3	Fixed	1.48 (1.12, 1.95)	.007	0.245	29
Comparison in C\	/D risk factors					
Dyslipidemia	2	Fixed	1.87 (0.85, 4.13)	.121	0.913	0
high-TC	1		5.78 (0.31, 107.92)			
high-TG	2	Fixed	10.46 (1.39, 78.56)	.022	0.554	0
low-HDL	2	Fixed	4.03 (1.26, 12.95)	.019	0.626	0
Hypertension	3	Random	2.44 (0.80, 7.43)	.117	0.117	53.3

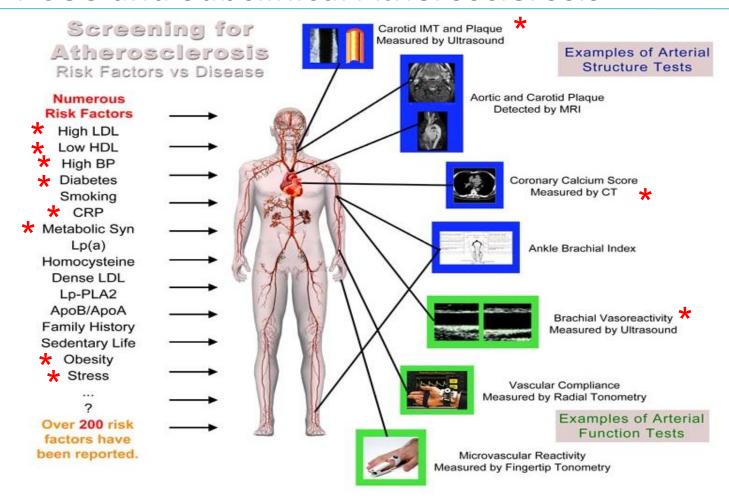

Note: CI = confidence interval; CVD = cardiovascular disease; high-TC = hypercholesterolemia; high-TG = hypertriglyceridemia; HIN = hyperinsulinemia; IFG = impaired fasting glucose; IGT =

impaired glucose intolerance; IR = insulin resistance; low-HDL = low high-density lipoprotein; Pre-DM = IGT plus IFG; OR = odds ratio; T2DM = type 2 diabetes mellitus.

Zhu. Metabolic disturbances in non-obese PCOS. Fertil Steril 2018.

Genetic Correlations with Metabolic Phenotype

Phenotype	Genetic Correlation	SE	Z	P-value
Body mass index	0.34	0.039	8.60	8.21×10^{-18}
Childhood obesity	0.34	0.066	5.17	2.40×10^{-7}
Fasting insulin levels	0.44	0.087	5.01	5.33×10 ⁻⁷
Type 2 diabetes	0.31	0.068	4.47	7.84×10^{-6}
High-density lipoprotein levels	-0.23	0.059	-3.96	7.40×10^{-5}
Menarche	-0.16	0.042	-3.76	1.71×10^{-4}
Triglyceride levels	0.19	0.052	3.61	3.05×10^{-4}
Coronary artery disease	0.23	0.069	3.32	8.86×10^{-4}
Depression	0.205	0.0582	3.5203	0.0004
Menopause	-0.014	0.0183	-0.762	0.4461
Male pattern balding	0.0149	0.0168	0.8861	0.3756


https://doi.org/10.1371/journal.pgen.1007813.t004

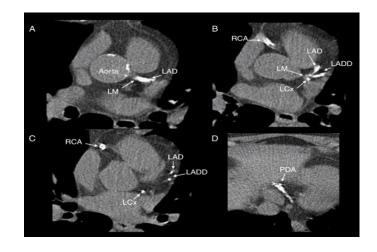
Family Members have Increased Metabolic Risk

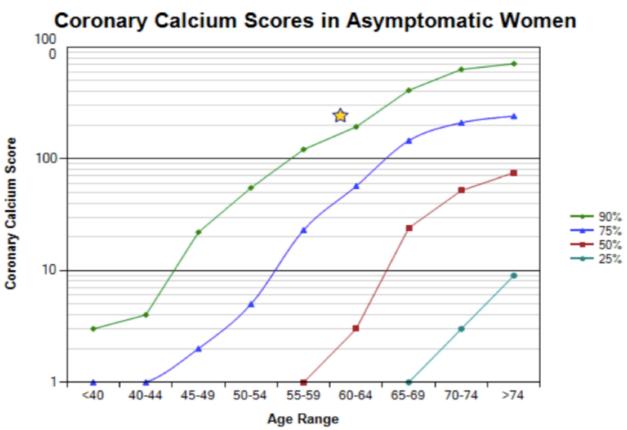
- Mothers metabolic syndrome, dyslipidemia
- Fathers metabolic syndrome, dyslipidemia, hypertension
- Brothers hypertension
- Sisters hypertension, metabolic syndrome

PCOS and Subclinical Atherosclerosis

Carotid artery intima-media thickness in polycystic ovary syndrome: a systematic review and meta-analysis

Michelle L. Meyer ^{1,*}, Angela M. Malek ², Robert A. Wild ³, Mary T. Korytkowski ⁴, and Evelyn O. Talbott ²


Study name	Statis	stics for	each stu	dy	Sam	ple size	D	Difference in means and 95% CI			
	Difference in means	Lower limit	Upper limit	p-Value	Cases	Controls					
Talbott 2000 30-44 y	0.010	-0.024	0.044	0.564	78	82	1	1	(E)	ľ	1
Talbott 2000 >=45 y	0.060	0.019	0.101	0.004	47	60			\exists		
Orio 2004	0.140	0.097	0.183	0.000	30	30					
Vural 2005	0.138	0.093	0.183	0.000	43	43					
Cascella 2008	0.080	0.046	0.114	0.000	200	100					
Heutling 2008	0.060	0.036	0.084	0.000	83	39			-		
Carmina 2009	0.080	0.032	0.128	0.001	95	90					
Pepene 2011	-0.063	-0.187	0.061	0.320	64	20			-0-		
36	0.072	0.040	0.105	0.000	640	464			♦		
_				•			-1.00	-0.50	0.00	0.50	1.00



PCOS 1123, Controls 923

Coronary Artery Calcification & PCOS

Author Year	n	Study Population/ Study Design	Outcome Measure/ Results
Shroff, 2007	24 cases 24 24 controls	Obese, premenopausal [cross-sectional]	Prevalence of CAC (>0) OR=5.5 (1.03, 29.45) p<0.03
Christian, 2003	36 cases 71 controls	Premenopausal, age 30-45 [cross-sectional]	Prevalence of CAC (>0) OR=1.99 (0.68,5.82) p=0.21 (NS)
Talbott, 2004	61 cases 85 controls	BMI < 35 [prospective] Age 40-61	Prevalence of CAC (>0) OR=2.31 (1.00, 5.33) p=0.049
Talbott, 2008	149 cases 166 controls	All BMI [cross-sectional]	Prevalence of CAC >10 OR=1.90 (1.04, 3.48) p=0.037
Chang, 2011	144 PCOS 170 controls	Age 37-45years Cross sectional	Prevalence of CAC (>10) PCOS 5.4% controls 6.3% p=0.74
Calderon-Margalit 2014	55 PCOS 668 controls	Mean age 45.3	Prevalence of CAC (>0) OR 2.7 (1.37-5.25)

CVD in a Danish Population of Young Women with PCOS

Table 1 Event rates of CVD in PCOS OUH, PCOS Denmark and controls

	PCOS OUH (N = 1159)		PCOS Denm (N = 17,995)		Controls (N = 52,329)		P ^a	Ь _р
	N (%)	IR	N (%)	IR	N (%)	IR		
CVD events	264 (23)	22.6	3970 (22)	22.0	7344 (14)	13.2	< 0.001	0.54
CVD (HT and DL excluded)	71 (6)	5.4	1290 (7)	6.4	2678 (5)	4.5	< 0.001	0.16
ICD10 CVD, total	121 (10)	9.5	1727 (10)	8.7	3089 (6)	5.2	< 0.001	0.31

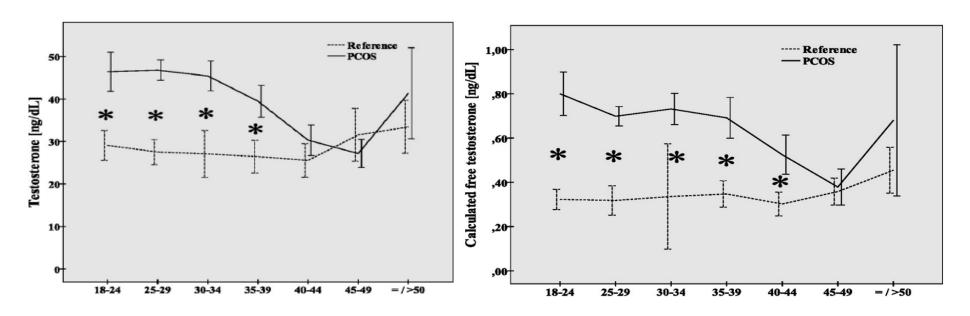
Risk of coronary heart disease and risk of stroke in women with polycystic ovary syndrome: A systematic review and meta-analysis

Sarah A. Anderson, John A. Barry, Paul J. Hardiman *

Institute for Women's Health, University College London, London WC1E 6HX, United Kingdom

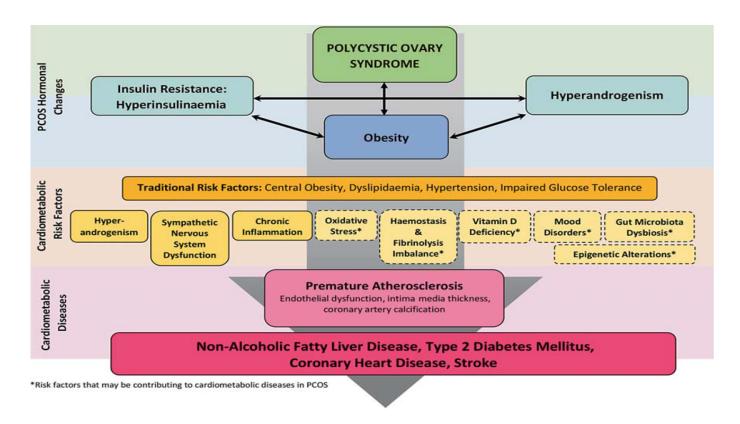
Non fatal stroke

	PCO	s	Conti	rol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
Wild 2000	10	319	13	1060	28.3%	2.61 [1.13, 6.00]	2000	-=-
Lunde 2007	2	131	12	723	17.6%	0.92 [0.20, 4.15]	2007	
Cheang 2008	5	24	11	158	11.1%	3.52 [1.10, 11.22]	2008	
Schmidt 2011	6	32	8	95	15.9%	2.51 [0.80, 7.89]	2011	+
Iftikhar 2012	5	309	6	343	27.1%	0.92 [0.28, 3.06]	2012	-
Total (95% CI)		815		2379	100.0%	1.94 [1.19, 3.17]		•
Total events	28		50					
Heterogeneity: Chi ² =	4.11, df=	4 (P =	0.39); 12:	= 3%				0.02 0.1 1 10 50
Test for overall effect:	Z = 2.65	(P = 0.0)	008)					Control PCOS


Non fatal CHD

	PCO	S	Contr	ol		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Cibula 2000	6	28	38	752	18.1%	5.12 [1.96, 13.38]	2000	
Wild 2000	15	319	42	1060	25.0%	1.20 [0.65, 2.19]	2000	
Lunde 2007	2	131	12	723	10.9%	0.92 [0.20, 4.15]	2007	
Cheang 2008	5	24	11	158	15.0%	3.52 [1.10, 11.22]	2008	
Schmidt 2011	2	32	5	95	9.3%	1.20 [0.22, 6.51]	2011	
lftikhar 2012	13	309	15	343	21.8%	0.96 [0.45, 2.05]	2012	+
Total (95% CI)		843		3131	100.0%	1.70 [0.92, 3.11]		•
Total events	43		123					
Heterogeneity: Tau ² =			•	(P = 0.	05); I² = 54	4%		0.02 0.1 1 10 50
Test for overall effect:	Z = 1.71	(P = 0.0)	19)					Control PCOS

Androgen Profile Through Life in Women With Polycystic Ovary Syndrome: A Nordic Multicenter Collaboration Study


PCOS n=681, controls n=230

Age in years

Does the CVD Risk Persist in the Menopause?

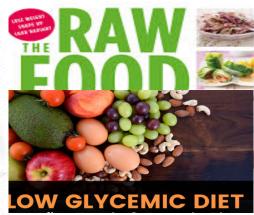
Hypothesis – older women with PCOS should have an increased risk of CVD

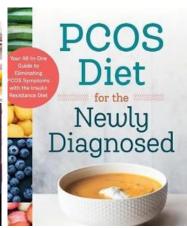
Metabolic Risk Screening for Primary Prevention of CVD

Step 1- Weight and BMI assessment - monitoring at each visit or minimum of 6-12 monthly, with frequency planned and agreed between the health professional and the individual Step 2- Glucose screening Every 3 years - HbA1C or PCOS + other diabetes risk factors - OGTT Preconception or early pregnancy = fasting glucose every 1-3 years OGTT at 24-28wk Step 3 - Blood Pressure check annually Step 4: Lipid screening in overweight and obese women at diagnosis, repeated based on risk Obstructive sleep apnea should be considered, screened and treated only if symptomatic

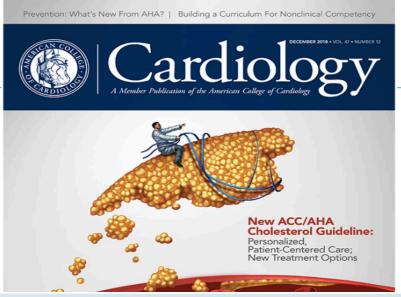
Human Reproduction 2018 Sep 1;33(9):1602-1618 Fertil Steril 2018 Aug;110(3):364-379

Metformin & Lifestyle Changes


4.4.1	EBR	Metformin in addition to lifestyle, could be recommended in adult women with PCOS, for the treatment of weight, hormonal and metabolic outcomes.	*** ⊕⊕○○
4.4.2	EBR	Metformin in addition to lifestyle, should be considered in adult women with PCOS with BMI ≥ 25kg/m2 for management of weight and metabolic outcomes.	*** ⊕⊕○○
4.4.3	EBR	Metformin in additional to lifestyle, could be considered in adolescents with a clear diagnosis of PCOS or with symptoms of PCOS before the diagnosis is made.	*** ⊕⊕○○
4.4.4	CPP	Metformin may offer greater benefit in high metabolic risk groups including those with diabetes risk factors, impaired glucose tolerance or high-risk ethnic groups (see 1.6.1).	
4.4.5	CPP	Where metformin is prescribed the following need to be considered:	


- adverse effects, including gastrointestinal side-effects that are generally dose dependent and self-limiting, need to be the subject of individualised discussion
- starting at a low dose, with 500mg increments 1-2 weekly and extended release preparations may minimise side effects
- metformin use appears safe long-term, based on use in other populations, however ongoing requirement needs to be considered and use may be associated with low vitamin B12 levels
- use is generally off label and health professionals need to inform women and discuss the evidence, possible concerns and side effects.

What Diet is the Best for PCOS?



- •No specific diet, general energy deficit -30%
- •Behavioural; SMART Specific, Measurable, Activating, Realistic, Timely
- Psychological wellbeing to promote healthy lifestyle

TABLE 2 Risk-Enhancing Factors for Clinician-Patient Risk Discussion (10)

Risk-Enhancing Factors

- Family history of premature ASCVD (males, age <55 y; females, age <65 y)
- Primary hypercholesterolemia (LDL-C, 160-189 mg/dL [4.1-4.8 mmol/L); non-HDL-C 190-219 mg/dL [4.9-5.6 mmol/L])*
- **Metabolic syndrome** (increased waist circumference, elevated triglycerides [>150 mg/dL], elevated blood pressure, elevated glucose, and low HDL-C [<40 mg/dL in men; <50 in women mg/dL] are factors; tally of 3 makes the diagnosis)
- Chronic kidney disease (eGFR 15-59 mL/min/1.73 m² with or without albuminuria; not treated with dialysis or kidney transplantation)
- Chronic inflammatory conditions such as psoriasis, RA, or HIV/AIDS
- History of premature menopause (before age 40 y) and history of pregnancy-associated conditions that increase later ASCVD risk such as preeclampsia
- **High-risk race/ethnicities** (e.g., South Asian ancestry)
- Lipid/biomarkers: Associated with increased ASCVD risk
 - Persistently* elevated, primary hypertriglyceridemia (≥175 mg/dL);
 - If measured:
 - **Elevated high-sensitivity C-reactive protein** (≥2.0 mg/L)
 - Elevated Lp(a): A relative indication for its measurement is family history of premature ASCVD. An Lp(a) ≥50 mg/dL or ≥125 nmol/L constitutes a risk-enhancing factor especially at higher levels of Lp(a).
 - **Elevated apoB** ≥130 mg/dL: A relative indication for its measurement would be triglyceride ≥200 mg/dL. A level ≥130 mg/dL corresponds to an LDL-C >160 mg/dL and constitutes a risk-enhancing factor
 - **ABI** < 0.9

PENN PCOS CENTER

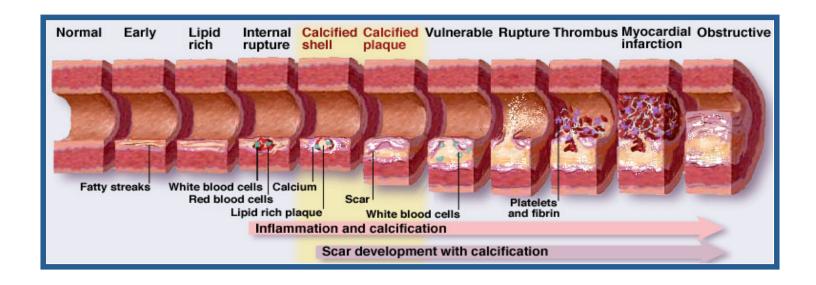
- Reproductive Endocrinologist
- Nurse Practitioner
- Clinical Nutritionist
- Dermatologist
- Psychiatrist/Clinical Psychologist
- Weight management
- Research Coordinator

Are you seeking a way to manage your PCOS?

The Penn PCOS Center at the University of Pennsylvania is conducting a six-month research study to compare the effect of medications on metabolic risk factors for women with polycystic ovary syndrome (PCOS)

Living with PCOS?
Trying to lose weight?

The Penn PGOS Center at the University of Pennsylvania is conducting a research study to determine the most effective revention for women who suffer from polycystic ovary syndrome (PCOS) excess weight, and symptoms of depression



Cardiovascular risk factors and disease in women. Art work by Piet Michiels, Leuven, Belgium.

Coronary Artery Disease Timeline

Atypical presentations and expanded spectrum of Ischemic Heart Disease (coronary microvascular dysfunction, vasomotor abnormalities, spontaneous coronary artery dissection and stress induced cardiomyopathy) in women

PREVALENCE OF PCOS

Country	Prevalence NIH	Prevalence Rotterdam	
Australia	8.6-15.3%	9-21.3%	
Brazil	NA	8.5%	
China	2.2-7.1%	5.6-11.2%	
Denmark	NA	16.6%	
Greece	6.8%	NA	
Iran	4.8-7.1%	14.1-15.2%	
Italy and Spain	5.4%	NA	
Mexico	6%	NA	
Sri Lanka	NA	6.3%	
Turkey	6.1%	19.9%	
UK	8%	NA	
USA	4-13%	NA	

Lizneva et al, Fertil Steril. 2016 May 24.

Impact of Race on Metabolic Risk

		US				
PCOS	US White	Black	India	Brazil	Finland	Norway
n	186	101	220	238	94	287
Metabolic	52					106
Syndrome	(28%)	52 (51.5%)	65 (29.6%)	70 (29.4%)	26 (27.7%)	(26.5%)
	89					
BMI criterion	(47.9%)	74 (73.3%)	82 (37.3%)	100 (42%)	45 (47.9%)	135 (47%)
	38	10				
TG criterion	(20.4%)	(9.9%)	59 (26.8%)	64 (26.9%)	11 (11.7%)	58 (20.2%)
	68					131
BP criterion	(36.6%)	59 (58.4%)	37 (16.8%)	83 (34.9%)	34 (36.2%)	(45.6%)
Glucose	22					
criterion	(11.8%)	22 (21.8%)	63 (28.6%)	42 (17.7%)	16 (17%)	75 (26.1%)
HDL	77		214	142		161
criterion	(41.4%)	72 (71.3%)	(97.3%)	(59.7%)	41 (43.6%)	(56.1%)

Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): a meta-analysis

Luqian Zhao¹, Zhigang Zhu¹, Huiling Lou¹, Guodong Zhu¹, Weimin Huang¹,

Shaogang Zhang¹ and Feng Liu¹

Study			%
ID		OR (95% CI)	Weight
Birdsall 1997	-	1.58 (0.77, 3.23)	5.30
Cibula 2000	-	4.24 (1.96, 9.17)	4.68
Wild 2000		1.50 (0.70, 3.21)	4.78
Solomon 2002	-	1.22 (1.04, 1.43)	26.17
Krentz 2007	-	1.36 (1.05, 1.76)	19.62
Lunde 2007 ——————————————————————————————————	· ·	2.80 (0.10, 78.39)	0.29
Wang 2011	-	1.14 (0.91, 1.43)	21.74
Schmidt 2011	- •	1.93 (0.76, 4.94)	3.31
lftikhar 2012	-	1.03 (0.59, 1.80)	7.94
Mani 2013 -		0.77 (0.40, 1.48)	6.16
Overall (I-squared = 40.0%, p = 0.091)	\Q	1.30 (1.09, 1.56)	100.00
NOTE: Weights are from random effects analysis			
.0128	1	78.4	

Endothelial function measured using flow-mediated dilation in polycystic ovary syndrome: a meta-analysis of the observational studies

PCOS 908 Controls 566

Study	Age	ВМІ	Statistics for each study			y	Difference in means and 95% CI
			Difference in means	Lower limit	Upper limit	<i>P</i> -Value	
Sorensen	33.000	25.000	-9.010	-12.939	-5.081	0.000	
Battaglia	25.000	25.000	−7 ·500	-8.322	-6.678	0.000	+
El-Kannishy	25.000	23.000	−7 ·000	-9.281	-4 ·719	0.000	
Pepene	26.000		-6.750	-10.245	-3.255	0.000	
Alexandraki	25.000	27.000	-5.990	-8.359	-3.621	0.000	
Diamanti-Kandarakis	26.000	29.000	-5.790	-8.209	-3.371	0.000	 -
Kravarti	23.000	25.000	-4 ·960	-6.585	-3.335	0.000	
Tarkun	24.000	24.000	-4.670	-6.689	-2.651	0.000	
Soyman	24.000	23.000	-4.560	-8.751	-0.369	0.033	 •
Cascella	24.000	29.000	-4 ·100	-4.644	-3.556	0.000	
Cussons	31.000	24.000	-3.970	-6.204	-1.736	0.000	
Orio	22.000	22.000	-3.800	-4.787	-2.813	0.000	
Meyer	33.000	37.000	-3.540	-6.010	-1.070	0.005	
Carmina	25.000	29.000	-2.600	-4.560	-0.640	0.009	
Moran	34.000	36.000	-1.700	-3.782	0.382	0.109	
Soares	25.000	23.000	-0.350	-1.824	1.124	0.642	-+
Mather	33.000		-0.300	-2.391	1.791	0.779	-+
Mancini	25.000	29.000	-0.300	-1.397	0.797	0.592	+
Brinkworth		36.000	0.500	-2.641	3.641	0.755	
Arikan	23.000	21.000	2.530	-2.007	7.067	0.274	
Beckman			2-600	1-846	3-354	0.000	+
			<u>-3·021</u>	-3 ⋅315	-2:727	0.000	
						-1	400 -700 000 700 1400

